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Abstract
Contact resonance atomic force microscopy (CR-AFM) methods currently utilize the
eigenvalues, or resonant frequencies, of an AFM cantilever in contact with a surface to quantify
local mechanical properties. However, the cantilever eigenmodes, or vibrational shapes, also
depend strongly on tip–sample contact stiffness. In this paper, we evaluate the potential of
eigenmode measurements for improved accuracy and sensitivity of CR-AFM. We apply a
recently developed, in situ laser scanning method to experimentally measure changes in
cantilever eigenmodes as a function of tip–sample stiffness. Regions of maximum sensitivity for
eigenvalues and eigenmodes are compared and found to occur at different values of contact
stiffness. The results allow the development of practical guidelines for CR-AFM experiments,
such as optimum laser spot positioning for different experimental conditions. These experiments
provide insight into the complex system dynamics that can affect CR-AFM and lay a foundation
for enhanced nanomechanical measurements with CR-AFM.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The ability to accurately measure material properties at nan-
ometer length scales is a critical challenge in the design and
manufacture of many emerging materials and systems. Given its
nanoscale spatial resolution, methods based on atomic force
microscopy (AFM) [1] are well suited to meet this need. Of
particular importance are nanoscale mechanical properties
including elasticity, plasticity, adhesion, friction, and wear, as
they can significantly influence macroscale behavior. A variety

of AFM methods have been developed to measure nano-
mechanical properties. One widely used technique, force-dis-
placement spectroscopy, operates in quasistatic contact [2].
However, other techniques have been developed to overcome
the limitations of quasistatic operation by exploiting the vibra-
tional dynamics of the AFM cantilever [3].

One such dynamic AFM method for measuring nano-
mechanical properties is contact resonance atomic force
microscopy (CR-AFM), a class of AFM techniques that
includes sample-excited atomic force acoustic microscopy
(AFAM) [4] and base-excited ultrasonic AFM (U-AFM) [5].
In CR-AFM, the cantilever tip is placed in contact with the
sample, and a resonant vibration of the cantilever is excited. A
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resonant frequency, or eigenvalue, of the surface-coupled
cantilever is then tracked as the cantilever is scanned over the
sample. CR-AFM exploits the sensitivity of the resonant
frequency f and quality factor Q to tip–sample contact stiff-
ness and damping [6]. Measurements of f and Q can be related
to spring and dashpot boundary conditions in a dynamic
Euler–Bernoulli beam model, and a contact mechanics model
can then be utilized to determine the elastic and viscoelastic
properties of the sample. CR-AFM has been used to measure
the nanomechanical properties of a wide variety of material
systems (see, e.g., [7–10]) and can be adapted to nano-
mechanical mapping [11–14].

In CR-AFM the eigenmodes, or the vibrational mode
shapes, of the AFM cantilever are also sensitive to the tip–
sample contact stiffness. Because contact stiffness depends
directly on sample elastic modulus, the eigenmodes vary as
the tip scans across different sample regions. This is in sharp
contrast to more commonly studied intermittent contact (IC-
AFM) methods, in which the cantilever eigenmodes are only
slightly perturbed versions of the eigenmodes of a freely
vibrating cantilever. For this reason, in IC-AFM equivalent
point-mass models can be constructed for each eigenmode
based on the equivalence of the kinetic, strain, and tip–sample
interaction energies of the free eigenmodes [15]. However,
such traditional AFM point mass models are inaccurate for
CR-AFM. Accurate analysis requires use of a continuum
beam model with complex boundary conditions to derive
material properties from the observed f and Q [16].

Detailed knowledge of CR-AFM eigenmodes could
potentially improve the methodʼs capabilities for quantitative
nanomechanical measurements. To date, this knowledge has
almost always been inferred from a mathematical model of
cantilever dynamics [6, 17]. Previous experimental work
[8, 18] was rather limited in scope and focused only on the
practical goal of improving signal detection. Measurement of
real eigenmode shapes could capture deviations from model
behavior and thus improve analysis accuracy compared to
using the idealized beam geometry employed in a theoretical
model. Knowledge of cantilever eigenmodes also provides a
potential alternate pathway for the determination of contact
stiffness though energy-based calculations. Finally, deeper
knowledge of the mode shapes encountered for the wide
range of contact stiffnesses in typical CR-AFM experiments
allows for better optimization of the experimental setup.
These combined benefits make measurements and demon-
stration of the experimental stiffness sensitivity of cantilever
vibration shapes particularly valuable.

Recently, a method was developed to measure the vibrat-
ing shape of an AFM cantilever in a commercial AFM instru-
ment by rastering the laser used in the optical beam detection
system [19]. This method can be implemented in situ in any
commercial AFM instrument that provides motor-controlled
laser spot positioning. Furthermore, this method does not
require additional external equipment beyond that necessary for
cantilever actuation, and in principle can be used to study the
cantilever vibration in any dynamic AFM mode.

In this work, we have applied the laser raster optical beam
method to study the dynamics of the AFM cantilever in CR-

AFM over a wide range of tip–sample stiffness. We control tip–
sample stiffness with use of a suspended microbridge structure
whose flexural stiffness varies continuously across its length.
This allows for the direct measurement of the cantilever
vibration shape (i.e., eigenmode) and resonant frequency (i.e.,
eigenvalue) as a function of tip–sample stiffness. The stiffness
range encompasses that of typical CR-AFM measurements.
Across this range of stiffness, we experimentally and theoreti-
cally compare the sensitivities of vibration shape and resonant
frequency to stiffness. We also discuss how measurements of
vibration shape can be used to optimize experimental setup and
operating parameters. Our measurements provide new insight
into the dynamics of the AFM cantilever, with both practical
and theoretical implications for CR-AFM measurements.

2. Materials and methods

Experiments were performed on a commercial AFM instrument
(Cypher S, Asylum Research/Oxford instruments)5. The
detection laser wavelength was 860 nm, and the laser spot was
approximately 30 μm long and 15 μm wide. Cantilever reso-
nances were excited by a broadband, heavily damped piezo-
electric transducer mounted beneath the sample (Contact
Resonance Sample Actuator, Asylum Research). Two different
cantilevers were used. Cantilever A (FMR, Nanosensors, Ger-
many) had static bending stiffness = ±k (2.69 0.16)c Nm-1,
nominal length = ±L (225 10)c μm, and free flexural reso-
nance frequencies of the nth eigenmode fn,free =

± ±(75.9 0.1, 475.8 0.1, ± ±1332 1, 2604 1) kHz for n =
(1, 2, 3, 4), respectively. Cantilever B (CONTR, Nanosensors,
Germany) exhibited = ±k (0.11 0.02)c Nm-1, =Lc ±(450 10)
μm, and fn,free = ± ±(12.6 0.1, 79.9 0.1, ±224.3 0.1,

±439.6 0.1) kHz for n = (1, 2, 3, 4), respectively. kc is a
property of an individual cantilever and is equal to the average
force applied to the cantilever at the tip in the direction normal
to the sample surface divided by the average displacement of
the cantilever at the tip in the same direction. Values of kc were
determined with the corrected thermal method [20, 21]. Both
cantilevers had reflective coatings to ensure that a near-constant
laser intensity was delivered to the photodiode.

To study changes in cantilever vibration shape, it is
useful to have an experimental sample that can provide a
smooth variation in tip–sample stiffness. As shown in
figure 1, one such sample is a suspended bridge structure. The
static bending stiffness of the bridge k x( )b b as a function of
bridge position xb should span a stiffness range comparable to
that typical of CR-AFM experiments. A silicon (Si) ‘micro-
bridge’ was fabricated with silicon-on-insulator microlitho-
graphic techniques. The scanning electron micrograph in
figure 1(a) shows that the microbridge was approximately
800 nm wide, 250 nm thick, and 20 μm long. Assuming
fixed–fixed boundary conditions, a rectangular cross section,

5 Certain commercial equipment, instruments, or materials (or suppliers, or
software, etc) are identified in this paper to foster understanding. Such
identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply that the
materials or equipment identified are necessarily the best available for the
purpose.
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and modulus and density for Si of 160 GPa and 2650 kg m-3,
respectively, the frequency of the first flexural resonance of
the microbridge is approximately 5.32MHz. As long as the
surface-coupled cantilever is excited at frequencies below this
resonant frequency, the bridge acts as a spring without any
inertia. Thus, for a given position on the bridge, several
cantilever resonances can be measured with the same effec-
tive tip–sample contact stiffness. The microbridge sample was
attached to the sample transducer with epoxy.

The effective tip–sample stiffness k x( )eff b for a given
contact position xb can be described by a series combination
of the contact stiffness kH on thick, supported Si and the
bending stiffness k x( )b b of the microbridge at the contact
location, i.e., = +k x k k x1 ( ) 1 1 ( )eff b H b b . The stiffness
k x( )b b associated with bending of the microbridge is modeled
as a clamped–clamped Euler–Bernoulli beam:

=
−( )

k x
E I L

x L x
( )

3

( )
, (1)b b

b b b
3

b
3

b b
3

where Eb, Ib, and Lb are Young’s modulus, bending moment
of inertia, and length of the bridge, respectively. The stiffness
kH associated with the Si–Si tip–sample contact interface is
modeled with Hertzian contact mechanics [22]. The system
schematic in figure 1(b) shows the relation between the var-
ious stiffness components. The value of keff associated with
an applied load of ∼100 nN versus bridge position is shown
in figure 1(c). keff values were determined experimentally
from the average results of force-displacement [2] and CR-
AFM experiments near the center of the bridge ( <k 200eff

Nm-1), and from only CR-AFM experiments near the edge of
the bridge ( >k 200eff Nm-1). For this calculation, the
applied CR-AFM model included a tip-offset parameter and
normal surface spring. keff has also been predicted

theoretically with equation (1) and the series spring equation.
The theoretical value of kH was chosen such that theory and
experiment match at the edge of the bridge, and the theore-
tical value of E I Lb b b

3 was chosen such that theory and
experiment match at the center of the bridge. The gap
between the Si bridge and the underlying substrate was
approximately 1 μm. This implies that the maximum static
force that can be applied without contacting the bridge to the
underlying substrate is about 3 μN. Care was taken during the
experiments to keep the maximum applied force well below
this limit. It can be seen from equation (1) and an appropriate
value for E I Lb b b

3 that the value of kb varies as a function of
position xb from an infinite value at the edge of the bridge to a
value much less than kH in the center of the bridge. keff is
dominated by the softer of kH or kb if ≪k kb H or ≪k k .H b

kH is known to be constant for a given applied load and
contact geometry. Therefore, it can be inferred that
kH = (1000 ± 200) N m-1 and kb = (5 ± 2) Nm-1 when

=x L 2b b from data at the edge of the bridge and center of
the bridge, respectively. It is often experimentally and theo-
retically convenient to use the dimensionless ratio
α = k keff eff c, which is the normalized effective contact
stiffness, to describe the sample-cantilever system. This
allows for a more direct comparison of results obtained with
different cantilevers.

Cantilever vibrational shapes were measured with the
following procedure. The cantilever was brought into contact
at a specified position on the microbridge and held at a
constant normal force (∼100 nN for the stiffer cantilever A
and ∼10 nN for the more compliant cantilever B). The system
was allowed to wait for 5 min to come into thermal,
mechanical, and electrical equilibrium. After equilibrium was
achieved, the feedback on the cantilever deflection was turned
off, which locked out the motion of the Z-piezo and allowed

Figure 1. (a) Scanning electron microscopy image of microbridge sample. (b) Model of the cantilever-microbridge system. The effective
contact stiffness k x( )eff b experienced by the cantilever tip is a series combination of the bridge spring k x( )b b and the spring associated with
Hertzian contact mechanics model kH, i.e., = +k x k x k1 ( ) 1 ( ) 1eff b b b H. The normalized effective contact stiffness is given as
α = k k ,eff eff c where kc is the static bending stiffness of the AFM cantilever. The applied experimental method will be concerned with
measuring the transverse cantilever motion w as a function of position xc along the length Lc of the cantilever and of time t. (c) keff versus
bridge position x .b Effective stiffness was measured with both static force–distance curves and CR-AFM experiments (blue data points) and
calculated with Euler–Bernoulli beam theory (black curve). The black curve has been matched to the experimental data by choosing a value
of kH such that theory and experiment match at the clamped edges of the bridge and choosing a value of E I Lb b b

3 for the bridge such that
theory and experiment match at the center of the bridge.

3
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repositioning of the laser spot without affecting the applied
force. The laser was positioned close to the cantilever tip (i.e.,
at xc = Lc). Then, a sinusoidal excitation voltage was applied
to the sample transducer over a range of frequencies from
20 kHz to 4MHz in 830 Hz increments. The cantilever
vibrational shape was measured by recording the amplitude
and phase of the photodiode response at each frequency for
80 equally spaced positions of the laser on the cantilever. The
response in both the vertical and horizontal photodiode
channels was recorded to distinguish flexural and torsional
motions. The cantilever was then moved to a new position on
the microbridge and the measurement repeated. Measure-
ments were made at 60 equally spaced positions on the
microbridge. A measurement of cantilever vibrational shape
at a single bridge position took about 15 min. The vibrational
shape measurement was also performed on the free cantilever
(i.e., tip out of contact).

The optical detection system of the AFM measures
cantilever slope rather than absolute displacement. Therefore,
the raw experimental results correspond to the amplitude of
the cantilever slope as a function of laser spot position,
excitation frequency, and effective tip–sample stiffness. This
raw result will be referred to as the cantilever ‘amplitude
slope shape’ ′A x( )c , a typical example of which is shown in
figure 2(a). To perform data analysis, it is necessary to con-
vert the experimentally measured amplitude slope shapes into
operating deflection shapes (ODSs). An ODS is the actual
shape in which the cantilever vibrates at a specific excitation
frequency. For the system studied here, the ODSs are iden-
tical to the cantilever eigenmodes W x( )n c , the solution to the
Euler–Bernoulli beam equations, at the cantilever resonance
frequencies. The conversion from ′A x( )c to ODS is

accomplished by first reflecting the amplitude slope shape
about its antinode positions to obtain the measured cantilever
slope versus position. This will be referred to as the cantilever
slope shape ′W x( )n c ; a typical example is shown in figure 2(b).

′A x( )c is the absolute value of ′W x( )n c . The slope shape
′W x( )n c is then fit to the following model:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

β β

β β

′ = −

− +

( ) ( )
( ) ( )

W x C x x

C x x

( ) cos cosh

sin sinh , (2)

n n n

n n

c 1 c c

2 c c

where C1 and C2 are fitting parameters, and
β = f f1.875n n 1,free is the cantilever wavenumber. This

model is derived from Euler–Bernoulli beam theory and holds
for a cantilever beam regardless of the boundary conditions at
the tip. The fitted model is then integrated to recover the
cantilever eigenmode. A typical eigenmode recovered from
this process is shown in figure 2(c).

A final experimental quantity that was computed is the
slope amplitude integral I. I is the integral of the slope
amplitude signal along the length of the cantilever:

∫= ′I A x x( )d
L

0
. Use of I to locate resonance frequencies

ensures that resonance peaks are not missed because of zero
photodiode signal when the laser spot position is at a canti-
lever antinode. Use of I also increases the contrast of the
resonance peaks relative to the background noise.

3. Results and discussion

Figure 3 shows the dependence of I on excitation frequency
and normalized effective stiffness α = k keff eff c for both
cantilevers. This image is an experimental reconstruction of
the CR-AFM ‘S-curves’, which depict the relationship
between frequency and stiffness and were known previously
only from theory [16]. By measuring two different canti-
levers, we have covered a wide range of αeff . Results are
shown for the normalized frequencies f f1,free, so that the
images for different cantilevers can be compared directly. The
bright regions in the slope amplitude integral maps indicate
the locations of the resonance frequencies of the surface-
coupled cantilever. The flexural vibration modes show up
primarily in the vertical (V) photodiode channel, while the
lateral or torsional vibration modes show up primarily in the
horizontal (H) photodiode channel. However, imperfections
in alignment between the sample, excitation source, laser,
cantilever, and photodiode mean that the flexural modes are
also visible in the H channel, and the lateral or torsional
modes are slightly visible in the vertical channel. It can be
seen that the flexural resonant frequencies are much more
sensitive to changes in contact stiffness than the resonance
frequencies of the torsional or lateral modes. Furthermore, the
flexural resonant frequencies vary nonlinearly from approxi-
mately the value for a clamped-free cantilever for low contact
stiffness to near the value of a clamped-pinned cantilever for
high contact stiffness. The measured resonance frequency
values at three keff values for each cantilever are shown in
table 1.

Figure 2. (a) Measured (circles) photodiode slope amplitude ′A x( )n c

and corresponding absolute value of the best fit (line) from the Euler–
Bernoulli model with arbitrary boundary conditions (equation (2) in
text). (b) Cantilever slope shape ′W x( )n c obtained by reflecting ′A x( )n c

about the antinode positions. (c) Cantilever eigenmode W x( )n c

determined from integration of ′W x( )n c . Example is for the second
resonance frequency of a freely vibrating cantilever.
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Figure 3. Images of the cantilever slope integral I as a function of normalized excitation frequency f f1,free and normalized effective contact

stiffness αeff . The images in (a) and (c) were obtained on cantilever A for the vertical (V) and horizontal (H) photodiode signals, respectively,
while (b) and (d) are the corresponding images for cantilever B. In the color scale, dark red represents the minimum and bright yellow the
maximum. The color scale has units of volts and ranges logarithmically between 0.001 and 10. Some of the individual modes of vibration are
labeled in the plots.

Table 1.Measured flexural resonance frequencies. Both the freely vibrating (free vibration) and in-contact frequencies (on supported silicon,
⩽x 0b , and at the bridge center, =x L 2b b ) are listed. The range over which the flexural frequencies vary should be bounded by the

theoretical predictions made with Euler–Bernoulli beam theory for a clamped-free beam [ β β + =L Lcos ( ) cosh ( ) 1 0n nc c ] and those for a
clamped–clamped beam [ β β − =L Lcos ( ) cosh ( ) 1 0n nc c ], where β = f f1.875 (n n 1,free . The lowest two lateral and torsional resonance

frequencies are located at ∼731 kHz and ∼3866 kHz for cantilever A and ∼252 kHz and ∼618 kHz for cantilever B. The lateral and torsional
resonance frequencies do not change significantly with keff .

Cantilever xb keff (N m-1) f1 (kHz) f2 (kHz) f3 (kHz) f4 (kHz)

Free vibration 0 75.9 ± 0.1 475.8 ± 0.1 1332 ± 1 2604 ± 1

A Lb/2 5 ± 2 132 ± 2 496 ± 1 1342 ± 1 2614 ± 1

⩽ 0 1000 ± 200 410 ± 9 1176 ± 24 2287 ± 93 3491 ± 276

Free vibration 0 12.6 ± 0.1 79.9 ± 0.1 224.3 ± 0.1 439.6 ± 0.1

B Lb/2 5 ± 2 48.6 ± 0.4 114 ± 1 240 ± 1 449 ± 1

⩽ 0 1000 ± 200 76.6 ± 0.3 216 ± 1 425 ± 2 709 ± 4

5
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For certain values of αeff , the flexural and lateral or tor-
sional modes have nearly the same resonant frequency. Here,
the vibrational response of the AFM cantilever has repeated
(closely spaced) eigenvalues [23, 24]. This behavior is often
evidenced experimentally by a double peak in the contact
resonance spectrum from the vertical photodiode channel.
When analyzing spectra for a single point, this effect can
make identification of the desired modes more difficult and
can complicate CR-AFM imaging experiments [11–13, 25].
Thus, it is important to choose the cantilever for CR-AFM
experiments such that the flexural and lateral or torsional
resonance frequencies will not be near each other for a sample
of interest and chosen cantilever eigenmode.

The CR eigenmodes Wn(xc) are usually determined from
theoretical models such as Euler–Bernoulli beam theory. With
our measurement procedure, we have directly measured
changes in cantilever eigenmodes as a function of αeff .
Figure 4 shows normalized amplitude slope shapes at the first
four resonant frequencies ′A x( )n c of the vertical photodiode
channel as a function of αeff and location on cantilever x Lc c.
Because ′A x( )n c are extracted on resonance, (a) both fre-
quency and stiffness change simultaneously along the x-axis

and (b) there is a simple relationship between ′A x( )n c and
W x( )n as described in figure 2. Each column in figure 4
represents the cantilever amplitude slope shape at a given αeff .
Each row shows how the slope amplitude at resonance varies
with αeff for a given cantilever position xc. Examination of
figure 4 clearly shows that ′A x( )n c varies as a function of tip–
sample stiffness. The shape changes nonlinearly from
approximately that of a clamped-free cantilever at low
effective stiffness to approximately that of a clamped-pinned
cantilever at high effective stiffness. Over some stiffness
ranges, the change in ′A x( )n c is very small, such as for
α > 1000eff for mode 1 of the softer cantilever B. Conversely,
some stiffness regimes exhibit rapid change in ′A x( )n c , such
as αeff from ∼10 to ∼100 for mode 1 of the stiffer cantilever
A. The dark regions in figure 4 represent the cantileverʼs
antinodes of vibration. These antinodes are the maxima in
cantilever displacement and hence have zero-valued canti-
lever slope. The figures illustrate the importance of choosing a
laser spot position that avoids antinode locations when per-
forming CR-AFM experiments.

From inspection of figures 3 and 4, it is apparent that
both resonant frequency and amplitude slope shape are sen-
sitive to changes in αeff . Furthermore, both frequency and
slope shape change monotonically with stiffness, suggesting
that either quantity could be used to extract nanomechanical
properties. However, it is difficult to quantitatively compare
the relative sensitivity to stiffness without further processing
of the data. For data reduction purposes, it is convenient to
reduce the amplitude slope shape at a given value of αeff to a
single quantity. Options for this include the antinode posi-
tions, the ratio C C2 1 of the curve fitting constants in

equation (2), the cantilever strain energy ∫ ″W x x( )d
L

n0 c , or the

inner product of the contact mode with the free mode. Here
we will use the inner product P between the measured sur-
face-coupled eigenmode and the measured free eigenmode:

∫=P W W xdn
L

n n0 ,free ,cont [26, 27].

Figures 5(a)–(h) show our measured results for the inner
product Pn and resonance frequency fn versus αeff . The

eigenmodes are mass normalized, that is ∫= W x1 d
L

n0
2 . For

comparison, we also plot the values of Pn and fn predicted by
Euler–Bernoulli beam theory with a clamped boundary con-
dition on one side and a spring boundary condition on the
other [16]. The Euler–Bernoulli model agrees well (within
∼10%) with the experimental data for values of the normal-
ized stiffness α < 100eff . The relatively poor agreement at
higher αeff is attributed to the lack of additional model
parameters such as a lateral spring or relative tip position
[16, 28]. From the figure, it is clear that the inner product
provides a monotonic function of stiffness related to slope
shape. Thus, Pn provides an alternate parameter for calcu-
lating tip–sample contact stiffness. Pn could either be used to
independently calculate contact stiffness or could be used in
conjunction with fn as an additional observable parameter that
is at the same frequency. A second observable parameter at
the same frequency is especially important when tip–sample
contact stiffness varies as a function of frequency and a model

Figure 4. Cantilever amplitude slope shape ′A x( )n c as a function of
normalized effective contact stiffness αeff for both cantilevers A and
B and modes 1 though 4. Each column in the figures has been
normalized to vary between zero (black) and one (white), and
represents ′A x( )n c at a given contact stiffness. The dark curves show
the motion of the antinode positions.
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with two unknown boundary conditions is needed. Common
CR-AFM models with multiple unknown boundary condi-
tions include models with both a normal stiffness and an
offset tip position or models with both normal stiffness and a
lateral spring. In traditional CR-AFM the second boundary
condition would be found by taking measurements at a sec-
ond resonance frequency. This traditional approach is not
applicable if the material properties are frequency dependent.

From the theoretical model we can generate curves that
are easily differentiated and thus allow for a discussion of
sensitivity. The sensitivity of contact resonance frequency

αfd dn eff and inner product αPd dn eff to changes in stiffness
are not equivalent. Our ability to accurately measure fre-
quency is also much different from our ability to measure
cantilever slope shape. Thus, absolute sensitivity values are
not directly comparable. Instead, we limit discussion to noting
the values of αeff at which the maxima in sensitivity occur.
Figures 5(i)–(h) show the sensitivity functions αPd dn eff and

αfd dn eff for modes n = 1 to n = 4. Each sensitivity curve has
been scaled from 0 (minimum) to 1 (maximum) to facilitate
comparison. For modes 2 through 4, the peak in αPd dn eff

occurs at values of αeff that are ∼40% greater than those for
αfd dn eff . The value of αeff of maximum sensitivity increases

for both αPd dn eff and αfd dn eff as mode number n increases.
The frequency sensitivity αfd dn eff is high for low values of
αeff and then decreases with increasing αeff (that is, as the
system approaches the clamped-pinned condition). In

contrast, αPd dn eff is large only for a narrow range of αeff . The
most dramatic difference between αfd dn eff and αPd dn eff

occurs for mode 1. There, the maximum in αPd d1 eff occurs
at α ∼ 14eff , a stiffness where αfd d is only about 10% of its
maximum value. This has practical implications for CR-
AFM: measurement of the slope shape could expand the
range of measurement sensitivity beyond that currently
attainable with frequency data alone, particularly for
mode n = 1.

The shape of the cantilever vibration also has practical
applications for CR-AFM experiments. The dark regions in
figure 4 correspond to the location of the antinodes of
vibration. Because the optical beam deflection system used in
most commercial AFMs is a slope detector, it is necessary to
avoid positioning the laser spot near one of these antinode
locations in a CR-AFM experiment. This is a nontrivial task,
because the shape of cantilever vibration changes as a func-
tion of tip–sample stiffness. The applied beam model will not
perfectly predict the cantilever eigenmodes because of inac-
curacies in the model and uncertainties in the contact stiff-
ness. Because of these imperfections, a theoretical prediction
of slope shape will not be sufficient for determining optimal
laser spot positions in certain CR-AFM experiments. For
instance, the antinodes of the higher-order eigenmodes are
spaced more closely together, so that smaller changes in laser
spot position can have larger changes in observed amplitude.
Another example is attempting to track multiple eigenmodes

Figure 5. (a)–(d) Measured resonance frequencies fn as a function of normalized effective contact stiffness αeff for the first four modes with
theory overlaid. (e)–(h) Measured inner product of free and surface-coupled mode shape Pn as a function of αeff with theory overlaid. Blue
circles: cantilever A, red circles: cantilever B, theory: black line; see text for details. (i)–(l) Comparison of normalized fn sensitivity αfd d
(dotted line) and Pn sensitivity αPd d (dashed line) calculated from the analytical model. For the first mode the maximum in sensitivity of
these two measurements occur at significantly different values αeff .
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simultaneously [12, 14], in which case the antinodes for each
eigenmode should be avoided. In these situations, the best
approach to determine optimal laser spot positions maybe to
make an experimental measurement of slope shape with the
method described in this work.

Movement of the antinode position along the cantilever
can inhibit the application of CR-AFM to materials with a
high range of contact stiffness. This is especially important
for CR-AFM imaging methods, which require sufficient
vibration amplitude of the resonance at all locations across the
sample. To demonstrate this effect, we performed CR-AFM
frequency-tracking experiments on the microbridge sample
for the first eigenmode of cantilever vibration with two dif-
ferent laser spot positions with the dual amplitude resonance
tracking (DART) method [13]. The results are shown in
figure 6. Typically in AFM experiments, the laser spot is
positioned near the end of the cantilever to maximize

quasistatic force sensitivity. As shown by the red data points
in figure 6, this laser position provides high vibration
amplitude and good frequency tracking on the stiffer edges of
the bridge. However, when traversing along the bridge, the
amplitude steadily drops to the point that tracking fails, and
no reliable frequency information is obtained near the center
of the bridge. Such a result could be predicted from
figure 4(a), which shows an antinode crossing the chosen
laser position for this particular stiffness range. By instead
positioning the laser much closer to the clamped end of the
cantilever (blue data points), the maximum amplitude at the
stiff edges of the bridge is reduced, but the minimum
amplitude on the more compliant portion of the bridge is
much greater. At all times, the amplitude is high enough for
successful frequency tracking with the base laser position. We
conclude that it is necessary to choose a laser spot position on
the cantilever that does not cross an antinode position over the
stiffness range exhibited by the sample. For the first mode of
vibration and for samples with a very large stiffness range,
this will necessitate a laser position close to the cantilever
base. However, for other modes of vibrations and other
samples, there may be laser positions closer to the tip that
maximize force sensitivity and vibration amplitude, while still
avoiding antinode crossing. By obtaining slope shapes at the
high and low stiffness limits of a sample under investigation,
the optimal laser positioning can be determined. Alter-
natively, the results of figure 4 can serve to estimate the
optimal laser positioning when cantilevers with similar geo-
metry to those used here are employed.

4. Conclusions

The vibrational shapes and resonance frequencies of AFM
cantilevers in contact with a surface have been measured over
a wide and continuously varying range of effective contact
stiffness. This was accomplished with use of an in situ laser
scanning technique and a silicon microbridge sample. Canti-
lever vibration shape measurements exhibit a monotonic
relationship between eigenmode inner product and contact
stiffness. This suggests a potential alternate pathway for the
direct measurement of unique contact stiffness values with
CR-AFM. Furthermore, if combined with the measurement of
contact resonance frequency, the mode shape provides an
additional observable quantity that can be used to refine
parameters in more complex CR-AFM models (e.g., ones that
include tip position or lateral stiffness). This additional
observable could be especially useful in situations where tip–
sample stiffness depends on frequency, and thus data from
different eigenmodes cannot be assumed to have the same
boundary conditions. Results of the frequency tracking
experiments combined with cantilever vibration shape mea-
surements also provide users with practical guidelines for
selecting the optimal laser spot position in CR-AFM experi-
ments. We have demonstrated that the common practice of
locating the laser spot near the tip of the cantilever is not
always optimal and that the laser spot position should instead
be adjusted on an individual sample and cantilever basis.

Figure 6. CR-AFM frequency tracking experiment using the first
eigenmode of cantilever A. (a) AFM topography image of micro-
bridge. Dashed line indicates the scan line for the frequency tracking
experiment. (b) DART amplitude ′A1 versus bridge position xb for
two laser spot positions, one near the base of the cantilever (blue
dots) and one near the tip of the cantilever (red circles). Legend
insets are optical microscope images showing the exact laser spot
positions. The scale bar in the inset is 30 μm. (c) DART frequency f1
tracking versus scan position for two laser spot positions. Frequency
tracking capability of the system is lost when the antinode passes
through the laser spot position and amplitude drops below the
operational limit. Frequency data obtained after losing tracking is
deemed unreliable.
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Finally, benefitting from the varying stiffness of the micro-
bridge sample, our results validate CR-AFM frequency versus
stiffness S-curves that previously had only been predicted by
theory. Overall, the experimental results provide a wealth of
new information with which to validate, analyze, and guide
CR-AFM measurements. This information could not be
obtained from data taken at a single laser spot position or at a
single value of contact stiffness.
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